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Managers of forest- resourc.es.aire. faced, w.i.th. inc.reasing> demands for

l forest products as well as the needs of alternative uses for the land

-surface. Consideration must be given to the environmental problems as-

r C c sociated with the removal of forest by harvesting, diseases or pests,

and the effects of forest removal on the ever-increasing needs for

pure water.

ERTS-A data have opened up many possibilities for effective manage-

ment. However, new processing and analysis techniques are required to

exploit these data. In particular, automatic data processing appears

mandatory for many interpretation and inventory functions. For example,

p. wg oautomatic stratification by type and density class-provides a common
I E~ ~ 

FHJ -i( Zbasis for multiple uses. The data can be formatted for convenient in-

l," I sertion into a computerized data bank. Processing of repetitiveNE W

F4 Omr- coverages increases the accuracy of the inventory data and detects

changes and trends.

U •• One of the study areas used for automatic classification of forested

areas was the Cloquet, Minnesota area, located 25 miles west of Duluth.
'D a,
0C m 3 Approximately 24,000 acres of forest and associated land use types were

o'- stratified. The features used for classification were derived from

the four MSS bands of ERTS-A image 1075-16312, an October 6, 1972 cover-

age of the Cloquet study area. Data was extracted from the 7-track

800 BPI computer compatible tapes (CCT). Ground truth information was
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obtained by using aerial photointerpreters from the University of

Minnesota's Institute of Agriculture Remote Sensing Laboratory (IARSL),

located in the College-Of Forestry-.---S-i-nce te College-Ls--C-loquet For-

estry Center, an experimental forest, is in the midst of this area,

much information was previously known about ther f-ores t-types-. Spring

1:90,000 panchromatic aerial'photographs, numerous field checks, and

previous ground experience in the study area were used by the inter-

preters in generating the ground truth map. The Cloquet area was

delineated into five classes: conifers, hardwoods, open, water and

urban.

Having determined that land use classes can be delineated with

reasonable accuracy on the Cloquet test site., i.e., that forested

areas can be isolated from other land uses, the Chippewa National Forest

was selected as a second test site for determining the feasibility of

delineating forest types. The Chippewa National Forest contains 1.3

million acres with a broad spectrum of tree species. It contains ap-

proximately equal amounts of hardwoods and conifers and is a management

unit to which automatic classification results may be applied. The

Chippewa National Forest was covered by a NASA RB-57 overflight pro-

viding additional ground truth information at 1:60,000. Approximately

200,000 acres have been delineated by a trained photointerpreter familiar

with the area. Twelve forest types were delineated, namely: hardwood,

conifer, and mixed (containing more than 25% of both varieties); these

three types are further delineated into upland or lowland and finally

into high and low crown density (above or below 50%). Features were

derived from two cloud-free ERTS digital tapes 1076-16370, an October 7th
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coverage and 116-16373, a January 5th coverage.

in the broad cover types are listed below:

The species included

Upland

Jack pine
Conifer Red pine

White spruce
White pine

Trembling aspen
Paper birch

Hardwood American basswood
Sugar maple
Big tooth aspen
Red oak

Transition

Balsam fir

Green ash
American elm
Yellow birch

Lowland

Black. spruce.
Tamarack
Northern white cedar

Black ash
Balsam poplar
Silver maple

Two types of features were used for automatic classification,

namely: multi-spectral and spatial. The multi-spectral data consisted

of the output of th- four MSIS bands sensitive to .5-.6, .6-.7, .7-.8,

and .8 to 1.1 microns. When seasonal coverage: was used (e.g.,. over the

Chippewa National Forest), the multi-spectral feature vector consisted

of the four bands from each coverage. Only the most effective features

were retained according to their effectiveness for class separation.

To increase the amount of information contained in the feature set

and improve classification accuracy, spatial features were added. An

evaluation of three spatial frequency algorithms was made, the Fourier,

Walsh and Slant transforms.

Edges in a picture introduce spatial frequencies along a line in

the complex frequency plane orthogonal to the edge. High spatial fre-

quencies correspond to sharp edges and low spatial frequencies correspond

to regions of approximately uniform grey land. Spatial filtering in an
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image to detect the texturve is a natural extension to two dimensions

of the traditional one-dimensional or temporal filtering process in

Cjompaication networKs. T-ie Fourier transform is o tool for ¢ompniting

the frequency components of a temporal waveform. The orthogonal basis

functions are sinusoidal. Digita-l- implementa.tion of. the.Fourier. trans-

form became feasible for two dimensions with the development by Cooley

and Tukey of the Fast Fourier transform (FF-T). The FFT was our first

algorithm used to generate spatial features. Although it is inferior

to the Karhunen Loeve transform in a mean square error sense, it can

be computed far more efficiently with N log2 N computer operations where

N is the dimensionality of the pattern space.

The second algorithm used to measure spatial frequency was the Walsh

Hadamard transform. This transformation has a number of advantages;

it can be derived with N log2 N additions or subtractions and is binary

so that it is amenable to digital computation. Sequency is proportional

to the number of zero crossings of the Walsh wave; the analogy with the

sinusoidal frequency descriptor is obvious.

The third algorithm used for spatial features is the Slant trans-

form. Pratt, et al., from the University of Southern California de-

veloped a computationally fast Slant algorithm. One of the advantages

of the Slant transform is the compaction of the image energy into a

minimum number of basis vectors which resemble typical horizontal or

vertical lines of an image. Generally lines in an image will have a

constant grey level, over considerable length or linearly vary in

brightness over the length. The orthogonal set of basis functions
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in the Slant transform tend to accommodate this type of data. It

also has a sequency property descriptive of frequency content. Some

of the basis vectors of the Slant transform are identical to the Walsh

basis vectors. Pratt has shown that, the mean square error between an

image and the Slant transform is almost as small as that of the Kar-

hunen Loeve transform.

Once the feature vector was selected, the training and testing samples

for an automatic classifier were extracted from the digital tape as follows:

The ERTS computer compatible tapes were reproduced on film by writing with

a digital magnetic tape to film printer f-or purposes of registering with

ground truth information. The output film provides an image of the study

area containing grid lines corresponding to record and word on the digital

magnetic data tape. Registration of ground truth with ERTS-A data from band 7

was accomplished by recognition of landmarks such as the numerous water

ies .in- the. area. .Once ground truth and ERTS-A data were registered,

type boundaries were encoded in terms of record and word numbers. From

within the type boundaries, data arrays were isolated to serve as training

samples. The size of the arrays was varied starting with an 8 x 8 array

or 70 ground acres. As the array size increases, the feature set is better

able to describe the original image and therefore-the classification

accuracy increases. However, the larger array size decreases ground

resolution.

Having selected the features to be used and the training set, a

linear discriminant classifier is trained. Briefly, the classifier

algorithm which we call K-class groups each of the features of the

training set around an orthogonal basis vector in a least mean square

sense. The matrix required to do this is computed for subsequent
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application to the input data during testing and during the generation

of overlay maps. The class to which the input data point belongs is

determined by the distance from the various orthogonal vector points.

Because the mapping errors- and the distributions of the various

classes are different, it would be a coincidence that the linear boun-

daries between classes determined by the K-class algorithm would be

optimum when all the classes are weighted alike. Thus, we find it

advantageous to adjust the weights of each class to minimize the

total mapping error. This adjustment does not actually minimize the

mapping error, but does minimize the number of mistakes in the training

set of samples, which is surely directly proportional to the mapping

error. In addition, a cost parameter is included which will "guard"

one class over another.

initially, all gweighils are- set equal and the. Ooeffic^int .;t4X 's

computed and used to test the training set of samples. Based on the

testing results, the class weights are adjusted and the new coefficient

matrix is tested. This is continued while the step size is varied until

the step size is 0. Any time the testing results are worse than a

previous best, the step size is reduced by a factor 6'.

A by-product of the K-class algorithm is a distance formula which

measures the stat'istical dist-ance between cla-ss-es-. This formula is much

like the well-known Divergence measure. The only differencei"between

the two is that the Divergence measure is based on the likelihood ratio

algorithm, while the K-class distance is based on the K-class algorithm.

The two measures can be derived using the same logical steps. The

K-class program prints' out the distance between classes and the component
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of that distance attributed to feature k. Thus features are ranked

according to efficacy for separating classes and the least effective

features car be deleted,

Using only multi-spectral features, the classifier was trained on

data derived from each class on the Cloquet test site. The total

training area was approximately 5000 acres proportioned into five

classes. When testing on the same data, seventy-four percent of the

data are correctly classified. When adding texture computed on an

8 x 8 array, the classification accuracy increased to 99%.

In comparing the texture algorithms, it was found that the Slant

transform provides the highest classification accuracy. For arrays

8 x 8 and smaller, the Walsh transform outperforms the Fast Fourier.

As the dimensionality is increased, the Fourier transform performance

should be better than either the Walsh or Slant transforms since the

Fourier transform is asymptotically equivalent to the Karhunen Loeve

transform.

Stratification information is useful to natural resource land

managers. Our goal is to determine the capabilities of automatic

classification from ERTS-A data, the maximum number of classes and an

acceptable operational data.format. In addition, we seek to determine

the best combination of automatic and human interpretation. We will

compare automatic techniques to studies being done by IARSL on the

Chippewa National Forest and the State of Minnesota Land Management

Information System.


